SODA: Detecting COVID-19 in Chest X-rays with Semi-supervised Open Set Domain Adaptation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

Semi-Supervised Kernel Matching for Domain Adaptation

In this paper, we propose a semi-supervised kernel matching method to address domain adaptation problems where the source distribution substantially differs from the target distribution. Specifically, we learn a prediction function on the labeled source data while mapping the target data points to similar source data points by matching the target kernel matrix to a submatrix of the source kerne...

متن کامل

Co-regularization Based Semi-supervised Domain Adaptation

This paper presents a co-regularization based approach to semi-supervised domain adaptation. Our proposed approach (EA++) builds on the notion of augmented space (introduced in EASYADAPT (EA) [1]) and harnesses unlabeled data in target domain to further assist the transfer of information from source to target. This semi-supervised approach to domain adaptation is extremely simple to implement a...

متن کامل

Frustratingly Easy Semi-Supervised Domain Adaptation

In this work, we propose a semisupervised extension to a well-known supervised domain adaptation approach (EA) (Daumé III, 2007). Our proposed approach (EA++) builds on the notion of augmented space (introduced in EA) and harnesses unlabeled data in target domain to ameliorate the transfer of information from source to target. This semisupervised approach to domain adaptation is extremely simpl...

متن کامل

Semi-Supervised Domain Adaptation with Non-Parametric Copulas

A new framework based on the theory of copulas is proposed to address semisupervised domain adaptation problems. The presented method factorizes any multivariate density into a product of marginal distributions and bivariate copula functions. Therefore, changes in each of these factors can be detected and corrected to adapt a density model accross different learning domains. Importantly, we int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE/ACM Transactions on Computational Biology and Bioinformatics

سال: 2021

ISSN: 1545-5963,1557-9964,2374-0043

DOI: 10.1109/tcbb.2021.3066331